Geometrically motivated hyperbolic coordinate conditions for numerical relativity: Analysis, issues and implementations
نویسندگان
چکیده
We study the implications of adopting hyperbolic driver coordinate conditions motivated by geometrical considerations. In particular, conditions that minimize the rate of change of the metric variables. We analyze the properties of the resulting system of equations and their effect when implementing excision techniques. We find that commonly used coordinate conditions lead to a characteristic structure at the excision surface where some modes are not of outflow-type with respect to any excision boundary chosen inside the horizon. Thus, boundary conditions are required for these modes. Unfortunately, the specification of these conditions is a delicate issue as the outflow modes involve both gauge and main variables. As an alternative to these driver equations, we examine conditions derived from extremizing a scalar constructed from Killing’s equation and present specific numerical examples.
منابع مشابه
Geometrically motivated coordinate system for exploring spacetime dynamics in numerical-relativity simulations using a quasi-Kinnersley tetrad
Fan Zhang, Jeandrew Brink, Béla Szilágyi, and Geoffrey Lovelace Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California 91125, USA National Institute of Theoretical Physics, Private Bag X1 Matieland, Stellenbosch 7602, South Africa Center for Radiophysics and Space Research, Cornell University, Ithaca, New York 14853, USA (Received 2 August 2012; published 3 Oc...
متن کاملConstrained Transport Algorithms for Numerical Relativity. I. Development of a Finite Difference Scheme
A scheme is presented for accurately propagating the gravitational field constraints in finite difference implementations of numerical relativity. The method is based on similar techniques used in astrophysical magnetohydrodynamics and engineering electromagnetics, and has properties of a finite differential calculus on a four-dimensional manifold. It is motivated by the arguments that 1) an ev...
متن کاملFirst order hyperbolic formalism for Numerical Relativity
The causal structure of Einstein’s evolution equations is considered. We show that in general they can be written as a first order system of balance laws for any choice of slicing or shift. We also show how certain terms in the evolution equations, that can lead to numerical inaccuracies, can be eliminated by using the Hamiltonian constraint. Furthermore, we show that the entire system is hyper...
متن کاملA model problem for the initial-boundary value formulation of Einstein’s field equations
In many numerical implementations of the Cauchy formulation of Einstein’s field equations one encounters artificial boundaries which raises the issue of specifying boundary conditions. Such conditions have to be chosen carefully. In particular, they should be compatible with the constraints, yield a well posed initial-boundary value formulation and incorporate some physically desirable properti...
متن کاملHyperbolic tetrad formulation of the Einstein equations for numerical relativity
The tetrad-based equations for vacuum gravity published by Estabrook, Robinson, and Wahlquist are simplified and adapted for numerical relativity. We show that the evolution equations as partial differential equations for the Ricci rotation coefficients constitute a rather simple first-order symmetrizable hyperbolic system, not only for the Nester gauge condition on the acceleration and angular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005